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Free and based path groupoids

ANDRÉS ÁNGEL

HELLEN COLMAN

We give an explicit description of the free path and loop groupoids in the Morita
bicategory of translation topological groupoids. We prove that the free path groupoid
of a discrete group acting properly on a topological space X is a translation groupoid
given by the same group acting on the topological path space XI . We give a detailed
description of based path and loop groupoids and show that both are equivalent to
topological spaces. We also establish the notion of homotopy and fibration in this
context.

18B40, 55P35, 58E40; 55R91, 58D19

1 Introduction

Our aim is to give an explicit description of the path object in the bicategory of
translation topological groupoids. Our main application will be in the setting of
orbifolds as groupoids.

We adopt the model developed by Moerdijk and Pronk [9] to describe orbifolds in
terms of groupoids. Essentially an orbifold is a Morita equivalence class of groupoids
of a certain type, which we will call orbifold groupoids.

In this spirit, the right notion of morphism between orbifold groupoids is that of a
generalized map. These generalized maps arise as morphisms in the bicategory of
topological groupoids, functors and natural transformations when inverting the essential
equivalences; see Pronk [13].

All orbifolds can be represented by a groupoid given by a certain type of action of
a group G on a topological space X . This representation G ËX is called translation
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groupoid. In particular we will be interested in developable orbifolds defined by a
translation groupoid given by a discrete group acting properly on a space.

For these orbifolds, we use their groupoid characterization to obtain a description of
the generalized maps from the interval to the orbifold as a translation groupoid. We
prove that the free path groupoid of the translation groupoid G ËX is the translation
groupoid G ËXI. In fact we describe three different approaches resulting in three
characterizations of the path groupoid: as a colimit of G–paths, as a groupoid of
multiple G–paths and as a translation groupoid G Ë XI. We prove that the three
groupoids are equivalent.

We show that this construction of the path groupoid is functorial and invariant under
Morita equivalence.

The pullback along the diagonal of this model gives us as a particular case, the free
loop groupoid which coincides with the descriptions given by Lupercio and Uribe [7],
Adem, Leida and Ruan [1] and Noohi [10] in various contexts.

Moreover, we use this model to calculate the based groupoid of paths between two
points. We prove that this groupoid is actually equivalent to a topological space.

Using our description of the path groupoid, we provide an explicit characterization
for a homotopy between two generalized maps, as well as a definition of orbifold
fibrations. We prove that the evaluation map is both a groupoid homotopy equivalence
and a groupoid fibration.

Organization

In Section 2 we present some basic definitions and constructions for topological
groupoids. We define translation groupoids and introduce the bicategory of translation
groupoids resulting from inverting the essential equivalences. Section 3 introduces
the model for orbifolds as groupoids that gives the setting for the construction of the
path groupoid in the next section. Section 4 is devoted to the construction of the free
path groupoid. We give here an explicit equivalence between all models for the path
groupoid. We prove that this construction is functorial and invariant under Morita
equivalence. Section 5 provides a detailed description of the based path and loop
groupoids and describes some examples. Section 6 concerns the characterization of the
homotopy between generalized maps. In Section 7 we provide a definition of groupoid
fibration and prove that the evaluation morphism is a groupoid fibration.
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2 Context

2.1 Topological groupoids

A topological groupoid G is a groupoid object in the category Top of topological spaces
and continuous maps. Our notation for groupoids is that G0 is the space of objects and
G1 is the space of arrows, with source and target maps s; t WG1!G0, multiplication
m WG1 �G0 G1!G1, inversion i WG1!G1, and object inclusion u WG0 ,!G1.

The set of arrows from x to y is denoted byG.x; y/Dfg2G1 j s.g/Dx and t .g/Dyg.
The set of arrows from x to itself, G.x; x/, is a group called the isotropy group of G at
x and denoted by Gx .

A strict morphism � W K! G of groupoids is a functor given by two continuous maps
� WK1!G1 and � WK0!G0 that together commute with all the structure maps of
the groupoids K and G.

A natural transformation T W � )  between two morphisms �; W K ! G is a
continuous map T WK0!G1 with T .x/ W�.x/! .x/ such that for any arrow h Wx!y

inK1, the identity .h/T .x/DT .y/�.h/ holds. Since we are in a topological groupoid
and inversion is continuous, we also have a natural transformation T �1 W  ) � and
write � �T  .

Topological groupoids, strict morphisms and natural transformations form a 2–category,
which we denote by TopG.

A strict morphism � W K! G of topological groupoids is an essential equivalence if:

(i) � is essentially surjective in the sense that

s�1 WG1 �
t
G0
K0!G0

is an open surjection whereG1�tG0K0 is the pullback along the target t WG1!G0.

(ii) � is fully faithful in the sense that K1 is the pullback of topological spaces

K1 G1

K0 �K0 G0 �G0

�

.s;t/ .s;t/

���

Note that if there exists a functor ı W G!K with natural transformations � W idG) � ı ı

and � W ı ı �) idK in TopG, the functor � is essentially surjective — indeed, s�1 has
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a section defined by .�x; ı.x// WG0!G1 �
t
G0
K0, which implies that it is open and

surjective — and � is fully faithful because the map K1! K0 �K0 �G0�G0 G1 has an
inverse defined by .x; y; h/! �y ı ı.h/ ı �

�1
x .

An essential equivalence � WK! G does not generally have an inverse functor ı W G!K
such that � ı ı �T idG and ı ı � �T 0 idK in TopG. The functor ı exists by the axiom of
choice but in general it is not continuous.

Definition 2.1 Let  W K ! G and � W L ! G be strict morphisms. The groupoid
pullback P D K�G L is the topological groupoid whose space of objects is

P0 DK0 �
t
G0
G1 �

s
G0
L0

and space of arrows is P1 D K1 �tG0 G1 �
s
G0
L1. Source and target maps are given

by s.k; g; l/ D .s.k/;  .k/�1g�.l/; s.l// and t .k; g; l/ D .t.k/; g; t.l//. There is a
square of morphisms and a natural transformation T that makes the diagram

K�G L K

L G

�1

�2  

�

�T

commutative and is universal with this property.

Definition 2.2 The groupoids K and G are Morita equivalent if there exists a groupoid L
and a span

K �
 � L �

�! G;

where � and � are essential equivalences. We write G �M K.

The proof that a Morita equivalence is an equivalence relation is based on the groupoid
pullback defined above.

A generalized map .�; �/ from K to G is a span K �
 � J �

�! G such that � is an
essential equivalence. Two generalized maps K �

 � J �
�! G and K �0

 � J 0 �
0

�! G are
equivalent if there exists a diagram

J
�

��

�

~~

K L

u

OO

v
��

G

J 0
�0

__

�0

??
�T 0�T
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which is commutative up to natural transformations and where L is a topological
groupoid, and u and v are essential equivalences.

2.2 The Morita bicategory of topological groupoids MTopG

Consider the class of arrows E given by the essential equivalences in the 2–category
TopG. It was proven by Pronk in [13; 14] that E satisfies the conditions to admit a
bicalculus of fractions. The bicategory of fractions TopG.E�1/ obtained by formally
inverting the essential equivalences is what we call the Morita bicategory of topological
groupoids and we denote by MTopG.

The explicit description of the bicategory MTopG is as follows:

� Objects are topological groupoids G.

� A 1–morphism from K to G is a generalized map

K �
 � J �

�! G

such that � is an essential equivalence.

� A 2–morphism from K �
 � J �

�! G to K �0
 � J 0 �

0

�! G is given by a class of
diagrams

J
�

��

�

~~

K L

u

OO

v
��

G

J 0
�0

__

�0

??
�T 0�T

where L is a topological groupoid, and u and v are essential equivalences.

The horizontal composition of generalized maps K �
 � J �

�! G and G �
 � J 0  �! L

is given by the diagram
J 0 �G J

����

J
�

��

�

��

J 0
�

��

 

��

K G L

where J 0�G J is the groupoid pullback. Note that this composition is associative only
up to a 2–morphism.
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2.3 Translation groupoids

Let G be a topological group with a continuous left action on a topological space X .
Then the translation groupoid G ËX is defined by:

� The space of objects is X itself, and the space of arrows is the Cartesian product
G �X .

� The source s WG�X!X is the second projection, and the target t WG�X!X

is given by the action. Then .g; x/ is an arrow x! gx.

� The other structure maps are defined by the unit u.x/D .e; x/, where e is the
identity element in G, and .h; gx/ ı .g; x/ D .h ? g; x/ where ? is the group
multiplication.

Example 2.3 These examples will appear later on in our applications.

(1) Unit groupoid Consider the groupoid e ËX given by the action of the trivial
group e on the topological space X . This is a topological groupoid whose arrows
are all units. In this way, any topological space can be considered as a groupoid.

(2) Multiplication groupoid Let H be a subgroup of a topological group G.
Consider the translation groupoid H ËG where H acts by multiplication on G.

(3) Conjugation groupoid Let H be a subgroup of a topological group G. Con-
sider the translation groupoid H ËG where H acts by conjugation on G.

(4) Point groupoid Let G be a topological group. Let � be a point. Consider
the groupoid G Ë � where G acts trivially on the point. This is a topological
groupoid with exactly one object, �, and G is the space of arrows in which the
maps s and t coincide. We call GË� the point groupoid associated to G. In this
way any group can be considered as a groupoid.

We will denote by 1 the trivial groupoid with one object and one arrow; that is, 1D eË�,
the unit groupoid over a point or a point groupoid associated to the trivial group.

An equivariant map G ËX ! K Ë Y between translation groupoids consists of a
pair ' Ë f , where ' W G ! K is a group homomorphism and f W X ! Y satisfies
f .gx/D '.g/f .x/ for g 2G and x 2X .

Translation groupoids, equivariant maps and natural transformations form a 2–category
that we denote by TrG.
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2.4 The Morita bicategory of translation groupoids MTrG

We construct now a subbicategory MTrG of the Morita bicategory of topological
groupoids MTopG where the objects are strictly the translation groupoids and the maps
are equivariant ones.

Proposition 2.4 [14] Let  WGËX!LËZ and � WH ËY !LËZ be equivariant
maps. The fiber product K

K
�1Ëf

//

�2Ëg

��

G ËX

 
��

H ËY
�
// LËZ

is again a translation groupoid. Moreover , its structure group isG�H , KD .G�H/ËP
and the first components of the equivariant maps �1 Ë f and �2 Ë g are the group
projections �1 WG �H !G and �2 WG �H !H .

An equivariant essential equivalence is an equivariant map � Ë � which is an essential
equivalence.

Consider the bicategory whose

� objects are translation groupoids G ËX ;

� 1–morphisms from G ËX to K ËY are equivariant generalized maps

G ËX �Ë�
 �� LËZ 'Ëf

��!K ËY

such that � Ë � is an equivariant essential equivalence;

� a 2–morphism) from the equivariant generalized map GËX �Ë�
 ��LËZ 'Ëf

��!

K ËY to G ËX �0Ë�0
 ��� L0 ËZ0 '

0Ëf 0
���!K ËY is given by a class of diagrams

LËZ
'Ëf

%%

�Ë�

yy

G ËX RËU

u

OO

v
��

K ËY

L0 ËZ0
�0Ë�0

ee

'0Ëf 0

99
�T 0�T

where R ËU is a translation groupoid, and u and v are equivariant essential
equivalences.

Translation groupoids, equivariant generalized maps and diagrams as above form the
Morita bicategory of translation groupoids, which we denote by MTrG.
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3 Orbifolds as groupoids

We recall now the description of orbifolds as groupoids due to Moerdijk and Pronk
[9; 13]. Orbifolds were first introduced by Satake [16] as a generalization of a manifold
defined in terms of local quotients. The groupoid approach provides a global language
to reformulate the notion of orbifold.

A groupoid G is proper if .s; t/ W G1! G0 �G0 is a proper map and it is a foliation
groupoid if each isotropy group is discrete.

Definition 3.1 An orbifold groupoid is a proper foliation groupoid.

Given an orbifold groupoid G, its orbit space jGj is a locally compact Hausdorff space.
Given an arbitrary locally compact Hausdorff space X we can equip it with an orbifold
structure as follows:

Definition 3.2 An orbifold structure on a locally compact Hausdorff space X is given
by an orbifold groupoid G and a homeomorphism h W jGj !X .

If � WH!G is an essential equivalence and j�jW jHj!jGj is the induced homeomorphism
between orbit spaces, we say that the composition hıj�jW jHj!X defines an equivalent
orbifold structure.

Definition 3.3 An orbifold X is a space X equipped with an equivalence class of orb-
ifold structures. A specific such structure, given by G and h W jGj!X , is a presentation
of the orbifold X .

If two groupoids are Morita equivalent, then they define the same orbifold. Therefore
any structure or invariant for orbifolds, if defined through groupoids, should be invariant
under Morita equivalence.

Definition 3.4 An orbifold map f W Y ! X is given by an equivalence class of
generalized maps .�; �/ from K to G between presentations of the orbifolds such that
the following diagram commutes:

jKj jGj

Y X

j�jj�j�1

A specific such generalized map .�; �/ is called a presentation of the orbifold map f .
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We can obtain an orbifold by considering the action of a compact group G acting on a
space X with finite stabilizers. All orbifolds can be described in this way [12].

The orbifold X is developable if it is presented by a groupoid Morita equivalent to a
translation groupoid G ËX with G a discrete group acting properly on X .

4 Path groupoid

From now on, we will focus on developable orbifolds and G will be a discrete group
acting properly on X . In this context, we will show that in the bicategory of topological
groupoids any path in G ËX

I  I!G ËX
is equivalent to a strict map

I !G ËX

where I is the unit groupoid e Ë I , I D Œ0; 1� and I is any topological groupoid.

4.1 Generalized paths

A path in the groupoid G ËX in the Morita bicategory of topological groupoids is a
generalized map .ı; ˇ/ from the unit groupoid I to G ËX . That is, a span

I ı
 � I ˇ

�!G ËX:

Since I ı
 � I is an essential equivalence, we can use groupoid atlases [15; 17] to see

that the equivalence class ŒI ı
 � I ˇ

�!G ËX� has a representative of the form

I �
 � ISn

˛
�!G ËX;

where ISn is the groupoid associated to a subdivision

Sn D f0D r0 � r1 < � � �< rn�1 � rn D 1g

of the interval I D Œ0; 1� as explained below.

The space of objects of the groupoid ISn is the disjoint union
nG
iD1

Ii ;

where Ii is a small open neighborhood of Œri�1; ri � and .r; i/ denotes an element r in
the connected component Ii .
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The space of arrows of ISn is given by the disjoint union

nG
iD1

Ii

n�1G
iD1

. QIi t QIi /;

where
Fn
iD1 Ii is the set of unit arrows, QIi D Ii \IiC1 and another copy QIi was added

for inverse arrows. For each point ri in the subdivision Sn, QIi is an open neighborhood
of ri . Two arrows were added for each point .r; i/ in the interval QIi : Qri and its inverse
arrow such that the source of Qri is .r; i/ and its target is .r; i C 1/.

Definition 4.1 A generalized path in the groupoid G Ë X is a generalized map
I �
 � ISn

˛
�!G ËX such that:

(1) � W ISn! I on objects is the inclusion in each connected component, �.r; i/D r
and on arrows it sends all arrows to identity arrows, �. Qri /D idr .

(2) ˛ W ISn ! G ËX on objects is given by a map ˛i W Ii ! X in each connected
component and on arrows is given by ˛. Qri /D .ki ; ˛i .r// satisfying the condition
ki˛i .r/D ˛iC1.r/ for all r 2 QIi .

We denote by Map.ISn ; GËX/ this space of maps from ISn toGËX with the compact
open topology.

4.1.1 Equivalence of generalized paths We will establish now an equivalence
relation between the generalized maps defining our generalized paths which will allow
us to give a groupoid structure to the space of generalized paths.

Definition 4.2 Two generalized paths I �
 � ISm

˛
�!GËX and I �0

 � ISm0
ˇ
�!GËX

are equivalent if there exist a subdivision Sn and essential equivalences u and v such
that the following diagram commutes up to natural transformations:

ISm

I ISn G ËX

ISm0

˛�

�

u

v

�

�0 ˇ
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Since G is discrete, the condition ˛u� ˇv guarantees the existence of a natural trans-
formation T W

Fn
iD1 Ii !G �X such that T .r; i/D .gi ; ˛i .r// with ˇi .r/D gi˛i .t/.

By naturality of the transformation, the diagram

˛i .r; i/ ˇi .r; i/

˛iC1.r; i/ ˇiC1.r; i/

gi

ki k0
i

giC1

commutes for all r 2 QIi . Therefore k0i D giC1kigi
�1 for all i D 1; : : : ; n� 1.

Remark 4.3 Two generalized paths are equivalent if there exists a common subdivision
Sn and gi 2 G such that ˇi .r/ D gi˛i .r/ for all i D 1; : : : ; n and k0i D giC1kigi

�1

for all i D 1; : : : ; n� 1.

Then, we have a translation groupoid Gn ËMap.ISn ; G ËX/ given by this action of
Gn on the space Map.ISn ; G ËX/. Source and target are given by

s..g1; : : : ; gn/; .˛1; : : : ; ˛n; k1; : : : ; kn�1//D .˛1; : : : ; ˛n; k1; : : : ; kn�1/

and

t ..g1; : : : ; gn/; .˛1; : : : ; ˛n; k1; : : : ; kn�1//

D .g1˛1; : : : ; gn˛n; g2k1g
�1
1 ; : : : ; gnkn�1g

�1
n�1/:

4.1.2 Colimit construction In order to account for all possible subdivisions, we will
consider the colimit of the groupoids Gn ËMap.ISn ; G ËX/ over a partially ordered
set that we describe next.

We define the category CI as the category with objects the ordered tuples

Sn D f0D r0 � r1 � � � � � rn D 1g

with an open cover of I D Œ0; 1� given by connected intervals fIi j 1 � i � ng. We
require that:

(1) Œri�1; ri � � Ii and Ii \ fr0; r1; : : : ; rng D fri�1; rig, which is one point if
ri�1 D ri and two points if ri�1 < ri .

(2) (a) If rk�2 < rk�1 D rk D � � � D rl < rlC1 then we require that

Ik D IkC1 D � � � D Il � Ik�1\ IlC1:
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(b) If 0D r0 D r1 D � � � D rk < rkC1 then we require that

I1 D I2 D � � � D Ik � IkC1:

(c) If rk�1 < rk D rkC1 D � � � D rn D 1 then we require that

IkC1 D IkC2 D � � � D In � Ik :

We have a morphism from .fr0 � r1 � � � � � rng; fIig/ to .ft0 � t1 � � � � � tmg; f QIj g/ if:

(I) fr0; r1; : : : ; rng � ft0; t1; : : : ; tmg.

(II) The multiplicity of repeated elements decreases; ie for every i ,ˇ̌
fj j rj D rig

ˇ̌
�
ˇ̌
fj j tj D rig

ˇ̌
:

(III) The open cover fIig is a refinement of the open cover f QIj g in the following way:
(a) For each closed interval Œri�1; ri � with nonempty interior there is a unique

Œtj�1; tj � with Œri�1; ri �� Œtj�1; tj � and we have

Ii
�

// QIj

Œri�1; ri �

�

OO

�
// Œtj�1; tj �

�

OO

(b) If there is a repeated element in the ft0 � t1 � � � � � tmg, tj�1D tj , it is also
a repeated element of fr0 � r1 � � � � � rng, ri�1 D ri . We require Ii � QIj .

The morphisms are generated (as a category) by the set of morphisms:

(1) Eliminating a point from the subdivision f0D r0 � r1 � � � � � ri � � � � � rnD 1g:

di W .fr0 � � � � � ri � � � � � rng; fIig/! .fr0 � � � � � Ori � � � � � rng; f QIj g/;

where di drops the i th element and concatenates the consecutive intervals Ii
and IiC1, ie QIj D Ij for j D 0; : : : ; i � 1, QIi D Ii [ IiC1 and QIj D Ij for
j D i C 1; : : : ; n.

(2) Enlarging the intervals without changing the points of the subdivision given by
f0D r0 � r1 � � � � � rn D 1g:

u W .fr0 � � � � � rng; fIig/! .fr0 � � � � � rng; f QIig/

when Ii � QIi .
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We call CI the category of subdivisions of I which is a cofiltered category, which boils
down to the fact that for two subdivisions there is a common refinement.

For every morphism, there is a continuous map given by concatenation and inclusionG
i

Ii !
G
j

QIj :

To the morphism di W Sn ! Sn�1, we assign the functor di� W ISn ! ISn�1 that on
objects concatenates Ii [ IiC1 and on morphisms sends Qri and its inverse arrow
Qr 0i to the identity arrow on .r; i/. Similarly, for u W Sn ! Sn, there is a functor
u� W ISn ! ISn given by inclusion at the level of objects and morphisms. This gives
a functor from CI ! Gpd. We can obtain a contravariant functor  from Cop

I to
topological spaces that on objects sends Sn to Map.ISn ; GËX/ and on morphisms sends
di W Sn! Sn�1 to the morphism d�i WMap.ISn�1 ; G ËX/!Map.ISn ; G ËX/ given
by taking ˛ 2 Map.ISn�1 ; G ËX/ represented by .˛1; : : : ; ˛n�1; k1; : : : ; kn�2/ and
sending it to .˛1; : : : ; ˛i jIi ; ˛i jIiC1 ; : : : ; ˛n�1; k1; : : : ; ki�1; id; ki ; kiC1; : : : ; kn�2/,
ie taking ˛i W Ii [ IiC1!X to the restrictions to Ii and IiC1. Similarly,

u� WMap.ISn ; G ËX/!Map.ISn ; G ËX/

is just restriction of all the paths: taking ˛ 2 Map.ISn ; G Ë X/ represented by
.˛1; : : : ; ˛n; k1; : : : ; kn�1/ and sending it to .˛1jI1 ; : : : ; ˛njIn ; k1; : : : ; kn�1/.

We have an action of Gn on the space Map.ISn ; G ËX/ given by

.g1; : : : ; gn/ � .˛1; : : : ; ˛n; k1; : : : ; kn�1/

D .g1˛1; : : : ; gn˛n; g2k1g
�1
1 ; : : : ; gnkn�1g

�1
n�1/:

The map d�i WMap.ISn�1 ; GËX/!Map.ISn ; GËX/ is equivariant with respect to the
map �i W Gn�1! Gn given by �i .g1; : : : ; gn�1/D .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/.
This means that

�i .g1; : : : ; gn�1/ � d
�
i .˛1; : : : ; ˛n�1; k1; : : : ; kn�2/

D d�i ..g1; : : : ; gn�1/ � .˛1; : : : ; ˛n�1; k1; : : : ; kn�2//

This is because .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/ acting on

.˛1; : : : ; ˛i jIi ; ˛i jIiC1 ; : : : ; ˛n�1; k1; : : : ; ki�1; id; ki ; kiC1; : : : ; kn�2/

is equal in the first part to

.g1˛1; : : : ; gi˛i jIi ; gi˛i jIiC1 ; : : : ; gn�1˛n�1/
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and in the second part to

.g2k1g
�1
1 ; : : : ; giki�1g

�1
i�1; gi idg

�1
i ; giC1kig

�1
i ; : : : ; gn�1kn�2g

�1
n�2/;

which is

.g2k1g
�1
1 ; : : : ; giki�1g

�1
i�1; id; giC1kig

�1
i ; : : : ; gn�1kn�2g

�1
n�2/:

This is precisely

d�i ..g1; : : : ; gn�1/ � .˛1; : : : ; ˛n�1; k1; : : : ; kn�2//:

Similarly the map u� WMap.ISn ; GËX/!Map.ISn ; GËX/ is equivariant with respect
to the identity map Gn!Gn.

Therefore we have a contravariant functor from CI to the category of translation
groupoids that on objects sends Sn to GnËMap.ISn ; GËX/ and on morphisms sends
di WSn!Sn�1 to the functor .d�i ; �i / and u WSn!Sn to the functor .u�; id/; formally
we have a (covariant) functor ˚ W Cop

I ! TrG.

We consider now the (filtered) colimit of ˚ ,

P D colim
Cop
I

˚

given by an object P 2 TrG together with morphisms from Map.ISn ; G Ë X/ for
each Sn such that for each morphism the following diagrams commute:

For di :
Gn ËMap.ISn ; G ËX/

P

Gn�1 ËMap.ISn�1 ; G ËX/

�iËd
�
i

For u:
Gn ËMap.ISn ; G ËX/

P

Gn ËMap.ISn ; G ËX/

idËu�

Algebraic & Geometric Topology, Volume 23 (2023)



Free and based path groupoids 1973

Moreover, P D colim˚ has the following universal property. Given another translation
groupoid W with functors from Gn ËMap.ISn ; G Ë X/ that are compatible, such
functors factor uniquely through the colimit P as shown in the diagrams

Gn ËMap.ISn ; G ËX/

P W

Gn�1 ËMap.ISn�1 ; G ËX/

�iËd
�
i

Gn ËMap.ISn ; G ËX/

P W

Gn ËMap.ISn ; G ËX/

idËu�

Definition 4.4 The path groupoid P.G ËX/ of the translation groupoid G ËX is

P.G ËX/D colim
Cop
I

˚;

where ˚ W Cop
I ! TrG is as above.

We are ready now to give an explicit construction of the groupoid P D P.G ËX/ by
using the constructions of colimits in the category of topological spaces Top and in the
category of groups Grp.

The colimit of the contravariant functor  W Cop
I ! Top is a topological space M D

colim such that

M D

�a
CI

Map.ISn ; G ËX/
�.
�;

where� is the equivalence relation generated by ˛�d�i .˛/ for all Sn and di WSn!Sn�1

and ˛ � u�.˛/ for all Sn and u W Sn! Sn.

This topological spaceM D colim will be the space of objects of the path groupoid P.
To construct the space of arrows of the path groupoid, we consider now a colimit in
the category of groups.
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Consider the functor ' W Cop
I ! Grp which sends Sn to Gn and on morphisms sends

u WSn!Sn to the identityGn!Gn and di WSn!Sn�1 to the morphism �i WG
n�1!

Gn given by �i .g1; : : : ; gn�1/D .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/.

The colimit of ' is a group H D colim' such that

H D

�a
CI

Gn
�.
�

where � is generated by .g1; : : : ; gn�1/ � .g1; : : : ; gi ; gi ; giC1; : : : ; gn�1/. This
group H is discrete and acts on the topological space M constructed above.

We can describe now explicitly the object and arrow spaces of the path groupoid
P D P.G ËX/ in TrG:

P0 DM D colim D
a
CI

Map.ISn ; G ËX/=�

and

P1DH�M Dcolim'�colim D

��a
CI

Gn
�.
�

�
�

��a
CI

Map.ISn ; G ËX/
�.
�

�
;

which we endow with the inductive topology.

Remark 4.5 Let G be a discrete group acting on X . The path groupoid of G ËX is
the translation groupoid

P D P.G ËX/DH ËM:

We will show that this path groupoidP Dcolim˚ described above is actually equivalent
to the translation groupoid G ËXI . In order to give an explicit characterization of the
equivalence of categories, we will introduce some auxiliary groupoids which in turn
will relate to the idea introduced in [4] of multiple G–paths.

4.2 Multiple G–paths

We will provide now another description of the path groupoid in terms of equivariant
generalized maps. We will see that for each generalized path .�; ˛/, its equivalence
class ŒI �

 � ISn
˛
�!G ËX� contains a representative in MTrG of the form

I ı
 �G ËY �

�!G ËX;

where G ËY is a translation groupoid.
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Given a generalized path I �
 � ISn

˛
�!GËX , we will construct a space Y D Y˛ such

that GËY is Morita equivalent to ISn , and maps ı WGËY ! I and � WGËY !GËX
such that .ı; �/ is 2–isomorphic to the given G–path .�; ˛/.

4.2.1 Construction of G Ë Y˛ Let ˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/. Consider the
product space

G � .ISn/0 D f.g; .r; i// j g 2G; .r; i/ 2 Iig

and the identifications, for all r 2 QIi ,

.g; .r; i C 1//� .k�1i g; .r; i//;

where ˛. Qri /D .ki ; ˛i .r//.

Now Y˛ is defined as the quotient space

fŒ.g; .r; i//� j .g; .r; i//2G�.ISn/0 and .g; .r; iC1//� .k�1i g; .r; i// for all r 2 QIig:

Observe that the space Y˛ depends on ˛ in the sense that it is given by the subdivision Sn
and the group elements k1; : : : ; kn�1, but it is independent of the actual pieces of the
path ˛1; : : : ; ˛n.

The action of G on Y˛ is given by the multiplication in the group h
�
Œg; .r; i/�

�
D

Œgh�1; .r; i/�.

We can consider then the translation groupoid G ËY˛ where the source and target are
given by the maps s

�
h; Œg; .r; i/�

�
D Œg; .r; i/� and t

�
h; Œg; .r; i/�

�
D Œgh�1; .r; i/�.

4.2.2 Morita equivalence ISn
�M G ËY˛ We will show now that the translation

groupoid constructed above is Morita equivalent to the groupoid ISn . Let

� W ISn !G ËY˛

be the morphism defined by �..r; i//D Œe; .r; i/� on objects and �. Qri /D
�
ki ; Œe; .r; i/�

�
on arrows for all r 2 QIi . The open map � is essentially surjective since

s�1 WG � .ISn/0! Y˛ D .G � .ISn/0/=�

is the quotient projection. It is also fully faithful since .ISn/1 is given by the pullback
of the maps

G �Y˛

.ISn/0 � .ISn/0 Y˛ �Y˛

.s;t/

���
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Therefore given a groupoid ISn , we can construct another groupoid Y˛ for each set of
elements k1; : : : ; kn�1 such that ISn is Morita equivalent to G ËY˛.

4.2.3 The 2–isomorphism .�; ˛/) .ı; �/ We will define now the maps ı and � to
obtain the generalized map I ı

 �G ËY˛
�
�!G ËX being 2–isomorphic to the given

generalized path .�; ˛/.

We define �
�
Œg; .r; i/�

�
D g�1˛i .r/ on objects and �.h; Œg; .r; i/�/D .h; g�1˛i .r// on

arrows. Moreover, the morphism � is G–equivariant in the ordinary sense (the group
homomorphism is the identity).

The essential equivalence ı W G ËY˛! I is given by projection on both objects and
arrows, ı

�
h; Œg; .r; i/�

�
D r . Both morphisms � and ı are well defined and ı is open,

surjective on objects and fully faithful.

The diagram
ISn

˛

%%

�

||
�

��

I G ËX

G ËY˛
ı

cc

�

99

is commutative since ��..r; i//D�
�
Œe; .r; i/�

�
D˛i .ri / and ��. Qri /D�

�
ki ; Œe; .r; i/�

�
D

.ki ; ˛i .r// for all r 2 QIi .

Thus there is a 2–isomorphism between the generalized map I ı
 �G ËY˛

�
�!G ËX

and the generalized path I �
 � ISn

˛
�!G ËX .

Observe that the identifications we have made in the quotient to obtain the space Y˛
determine a gluing of the segments Ii at the different levels of G � .ISn/0 to obtain
copies of the entire interval I D Œ0; 1�. This gluing is determined by the group elements
k1; : : : ; kn�1.

To define the map � from the groupoid G ËY˛ associated to the generalized path ˛,
we are concatenating the different pieces ˛i in these different levels by multiplying by
the correct group element to obtain an honest path in X .

4.2.4 The homeomorphism  W Y˛!G � I For each map ˛ W ISn !G ËX , let us
show now that the space Y˛ we just constructed is G–equivariantly homeomorphic to
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the space G � I , where the action on the latter is determined by the action of G on Y˛
given by hŒg; .r; i/�D Œgh�1; .r; i/�. We have that the action on G � I is given by

G � .G � I /!G � I; .h; .g; r//D .gh�1; r/:

We define the homeomorphism  W Y˛!G � I as


�
Œg; .r; i/�

�
D ..ki�1 � � � k1/

�1g; r/

for i D 1; : : : ; n. The morphism  depends only on Sn and k1; : : : ; kn�1 and is
independent on the actual paths ˛1; : : : ; ˛n. The inverse morphism �1 WG � I ! Y˛

is given by
�1.h; r/D Œki�1 � � � k1h; .r; i/�

if r 2 Ii . Moreover, the homeomorphism  is G–equivariant by construction.

Definition 4.6 A multiple G–path in the groupoid G ËX is a generalized map

I  G Ë .G � I / �
�!G ËX;

where � is a G–equivariant map in the ordinary sense.

4.2.5 Equivalence of multiple G–paths Given two multiple G–paths

I  G Ë .G � I / �
�!G ËX and I  G Ë .G � I / �

�!G ËX;

they are equivalent if there exists a subdivision Sn and k1; : : : ; kn�1 2G such that the
diagram

G Ë .G � I /
�

&&

p

zz
I ISn

�

OO

�

��

G �X

G Ë .G � I /
p

dd

�

88

commutes up to natural transformations, where � D �k1;:::;kn�1 and �D �k1;:::;kn�1 .

Since p is an essential equivalence, we have that � � � and then �� � ��. That means
that there exists a natural transformation T W .ISn/0! G �X such that T .r; i/ is an
arrow between ��.r; i/ D �..ki�1 � � � k1/�1; r/ and �..ki�1 � � � k1/�1; r/. Therefore
we have that the multiple G–paths are equivalent if there exists a subdivision Sn,
k1; : : : ; kn�1 2G and g1; : : : ; gn 2G such that

gi�..ki�1 � � � k1/
�1; r/D �..ki�1 � � � k1/

�1; r/ if r 2 Ii :
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Since � is equivariant,

gi .ki�1 � � � k1/�.e; r/D .ki�1 � � � k1/�.e; r/ if r 2 Ii :

For i D 1 this means that there exists g1 2G such that �.e; r/D g1�.e; r/. Since the
interval e � I is connected, we have that gi D .ki�1 � � � k1/g1.ki�1 � � � k1/�1 for all
i D 1; : : : ; n. In other words, all other gi for i D 2; : : : ; n are determined by g1. Once
that we have a group element g1 2G that makes �.e; r/D g1�.e; r/ in the first piece
of the interval, r 2 Œ0; r1�, then all the other pieces of the interval coming from the
subdivision Sn will also coincide since, for all r 2 Ii ,

gi .ki�1 � � � k1/�.e; r/D .ki�1 � � � k1/�.e; r/

and
gi D .ki�1 � � � k1/g1.ki�1 � � � k1/

�1:

Then

.ki�1 � � � k1/g1.ki�1 � � � k1/
�1.ki�1 � � � k1/�.e; r/D .ki�1 � � � k1/�.e; r/;

which implies that g1�.e; r/D �.e; r/ for all r 2 I .

Proposition 4.7 Two multiple G–paths � and � are equivalent if there exists g 2G
such that

g�.e; r/D �.e; r/:

We have the group G acting now on the space of equivariant maps GMap.G � I;X/.
Let P 0 DG ËGMap.G � I;X/ be the multiple G–path groupoid.

Since �.g; r/ D g�.e; r/, we observe that a multiple G–path is determined by the
honest path ˇ W I !X given by ˇ.r/D �.e; r/. Conversely, any path ˇ W I !X can
be made into a multiple G–path by putting �.g; r/D gˇ.r/. Consider the translation
groupoid of honest paths, given by the obvious action of G on X . Let P 00 DG ËXI ,
where XI DMap.I; X/.

We will prove next that all three characterizations of the path groupoid, as generalized
paths, as multiple G–paths and as honest paths are equivalent.

4.3 Equivalence of the different models for path groupoids

Recall the definition of the path groupoid and the other two characterizations introduced
in the previous section:
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(1) The groupoid P D colim'Ëcolim , whereM D colim is the space of classes
of generalized paths.

(2) The groupoid P 0 DG ËGMap.G� I;X/, where GMap.G� I;X/ is the space
of G–equivariant maps.

(3) The groupoid P 00 DG ËXI , where XI is the free path space.

4.3.1 The equivalence of categories � W colim'Ëcolim !G ËGMap.G �I;X/
Recall that M D colim is the space of classes of generalized paths, ie

M D

�a
CI

Map.ISn ; G ËX/
�.
�;

where� is the equivalence relation generated by ˛�d�i .˛/ for all Sn and di WSn!Sn�1

and ˛ � u�.˛/ for all Sn and u W Sn! Sn. We will use the same notation,

.˛1; : : : ; ˛n; k1; : : : ; kn�1/;

to denote the elements in M .

The idea is to complete each piece ˛i of the generalized path

˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/

to have the entire branch �i of a multiple G–path � .

The functor � W colim'Ë colim ! G ËGMap.G � I;X/ Given a generalized
path ˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/ for the subdivision Sn of the interval I , we can
define (as in the previous section)

(1) a space Y˛ D fŒ.g; .r; i//� j .g; .r; i// 2G � .ISn/0g with the relation

.g; .r; i C 1//� .k�1i g; .r; i//

for all r 2 QIi ,

(2) a homeomorphism ˛ WG ËY˛!G Ë .G � I /,

(3) an essential equivalence �˛ W ISn !G ËY˛, and

(4) a generalized map I ı
 �G ËY˛

�˛
�!G ËX such that .�; ˛/) .ı; �˛/.

We define � W colim'ËM !GËGMap.G�I;X/ as �.˛/D �˛˛�1 on objects and
�.g1; : : : ; gn; ˛/D .g1; �˛˛

�1/ on arrows.
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:::
:::

�

e

g �e

˛1

k�11 ˛2
.k1k2/

�1˛3

Figure 1

Then �.˛/.g; r/D �˛˛�1.g; r/D �˛Œki�1 � � � k1g; .r; i/�D .ki�1 � � � k1g/�1˛i .r/ if
r 2 Ii . We are sending each generalized path ˛ D .˛1; � � � ; ˛n; k1; � � � ; kn�1/ into the
multiple G–path � given by

�.g; r/D g�1.ki�1 � � � k1/
�1˛i .r/ if r 2 Ii :

In particular, we have that the branch �e corresponding to the interval e� I is given by
the concatenation (see also Figure 1)

�.e; r/D ˛1.r/� k1
�1˛2.r/� .k2k1/

�1˛3.r/� � � � � .kn�1 � � � k1/
�1˛n.r/:

On arrows, we send ..g1; � � � ; gn/; ˛1; � � � ; ˛n; k1; � � � ; kn�1/2 colim'�colim into
the arrow .g1; �˛/, where �˛ is defined as before.

We will show next that � is an equivariant map between translation groupoids where
the group homomorphism is given by the projection on the first coordinate.

Let ˛0 D .g1˛1; : : : ; gn˛n; g2k1g1�1; : : : ; gnkn�1gn�1�1/. We have that

�.˛0/D g1�..˛1; : : : ; ˛n; k1; � � � ; kn�1//

since

�˛0.e; r/

D g1˛1.r/�.g2k1g1
�1/�1g2˛2.r/�� � ��.gnkn�1gn�1

�1
� � �g2k1g1

�1/�1gn˛n.r/

D g1.˛1.r/�k1
�1˛2.r/�.k2k1/

�1˛3.r/�� � ��.kn�1 � � � k1/
�1˛n.r/D g1�˛.e; r/:

The functor ��1 WG ËGMap.G �I;X/! colim'Ëcolim Consider the contin-
uous functor given by ��1.�/D � je�I ıie on objects and ��1..g; �//D .g; � je�I ıie/
on arrows, where ie W I! e�I sends r 2 I to .e; r/2 e�I . Recall that by our notation
convention the right side means in both cases the class in the colimit. Note that the
generalized path � je�I ı ie corresponds to a subdivision S1 with only one subinterval;
that is, � je�I ı ie is an honest path.
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The functors � and ��1 are inverse up to natural transformation The composition
� ı��1 WG ËGMap.G � I;X/!G ËGMap.G � I;X/ is the identity map since the
generalized map ˛� associated to � has only one piece. On objects,

� ı��1.�/D �.˛� /D �˛�

such that �˛� .g; r/D g
�1�.e; r/D �.g; r/, so �˛� D � . On arrows,

� ı��1.g; �/D �.g; �˛� /D �.g; �/D .g; �/:

We will prove next that the composition in the other direction is equivalent by a natural
transformation to the identity. We have that

��1 ı� W colim' Ë colim ! colim' Ë colim 

sends each generalized path class ˛ D .˛1; : : : ; ˛n; k1; : : : ; kn�1/ to the generalized
path ˛�˛ , where

˛�˛ .r/D �˛.e; r/D ˛1.r/�k1
�1˛2.r/� .k2k1/

�1˛3.r/�� � �� .kn�1 � � � k1/
�1˛n.r/;

and each arrow ..g1; : : : ; gn/; ˛1; : : : ; ˛n; k1; : : : ; kn�1/ 2 colim' � colim to the
arrow .g1; ˛�˛ /.

There is a natural transformation T W colim ! colim' � colim given by

T .˛/D ..id; k1�1; .k2k1/�1; : : : ; .kn�1 � � � k1/�1/; .˛1; : : : ; ˛n; k1; : : : ; kn�1//

which is an arrow between ˛ and ˛�˛ since

.id; k1�1; .k2k1/�1; : : : ; .kn�1 � � � k1/�1/.˛1; : : : ; ˛n; k1; : : : ; kn�1/

D
�
.id˛1; k1�1˛2; : : : ; .kn�1 � � � k1/�1˛n/; .k1�1k1; : : : ; .kn�1 � � � k1/�1kn�1.kn�2 � � � k1//

�
�
.˛1; k1

�1˛2; : : : ; .kn�1 � � � k1/
�1˛n/; .id; : : : ; id/

�
:

This generalized path is equal to the concatenation of the n pieces

˛1.r/� k1
�1˛2.r/� .k2k1/

�1˛3.r/� � � � � .kn�1 � � � k1/
�1˛n.r/

since the connecting arrows are all identities. Moreover, T satisfies the naturality
condition and is continuous by the universal property of the colimit.

Therefore � is an equivalence of categories between the groupoid of generalized paths
and the groupoid of multiple G–paths. We will see next that the groupoid of multiple
G–paths is just the free path space XI together with G acting on it.
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4.3.2 The isomorphism of categories � W G ËGMap.G � I;X/! G ËXI To
construct this isomorphism we will use the fact that a multiple G–path � is determined
by its value at the branch �e corresponding to the interval e� I , since � is equivariant.

We define �.�/D � ie 2XI on objects and �.g; �/D .g; � ie/ on arrows. Conversely,
��1.ˇ/D �ˇ where �ˇ .g; r/D g�1ˇ.r/. The functor

� WG ËGMap.G � I;X/!G ËXI

is an isomorphism of categories since it has a strict inverse functor, � ı ��1 D idGËXI

and ��1 ı � D idGËGMap.G�I;X/, satisfying that the restriction � and the action ��1

are both continuous.

Theorem 4.8 All models for the path groupoid of G ËX are equivalent ;

P.G ËX/D colim' Ë colim �G ËGMap.G � I;X/DG ËXI :

Remark 4.9 We can also prove that any generalized map is equivalent to a strict map
in the context of translation groupoids, without using groupoids atlases. It was proven
by Pronk and Scull in [14] that any generalized map

I ı
 � I ˇ

�!G ËX

between translation groupoids is equivalent to a generalized map

I �
 �G ËY ˇ 0

�!G ËX;

where the middle groupoid is a translation groupoid. In the same paper, they proved that
any essential equivalence between translation groupoids has to be of some prescribed
form. In our case, this implies that the essential equivalence I �

 � G Ë Y satisfies
e DG=K and I D Y=K where K acts freely on Y. Hence K DG and G acts freely
on Y. Since G acts also properly on Y we have that Y DG � I . Then any generalized
map .ı; ˇ/ is equivalent to a generalized map

I  G Ë .G � I / ˇ
00

�!G ËX:

Now, applying our isomorphism � W P 0! P 00 to the right leg of the span, we obtain
˛ D �.ˇ00/ 2XI which gives the equivalent strict map I ˛

�!G ËX .

4.4 Functoriality and Morita invariance of the path groupoid

In this section we will see that the path groupoid is functorial and that the path groupoid
is well defined up to Morita equivalence.
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4.4.1 Functoriality We will show that an equivariant map between translation
groupoids induces an equivariant map between the path groupoids.

For a strict equivariant map ' Ë f W G Ë X ! H Ë Y , we have an induced map
'� Ë f� W G ËXI !H Ë Y I defined by f�.˛/ D f ı ˛ for all ˛ 2 XI and '� D '.
We construct now an equivariant map P.'Ëf / WP.GËX/!P.H ËY / between the
colimit constructions.

For every n we have induced maps

.' Ëf /� WMap.ISn ; G ËX/!Map.ISn ;H ËY /

in terms of the description Map.ISn ; G ËX/ D Gn Ë .XI /n �Xn�1 Gn�1; this map
corresponds just to 'n Ë .f n�1� �'n/. By taking the colimit we obtain an equivariant
map P.' Ëf / W P.G ËX/! P.H ËY /.

Similarly, we have an induced map

'� Ëf� WG ËGMap.G � I;X/!H ËHMap.H � I; Y /

between the multipleG–path groupoids. We consider an equivariant map .G�I / �
�!X

and define f�.�/ WH � I ! Y by f�.�/.h; r/D h�1f .�.e; r//.

In any of the three models the functoriality is easy to check and we have the following
theorem.

Theorem 4.10 The path groupoid of G ËX is functorial for equivariant maps.

Moreover, the equivalence of the three models for the path groupoid is natural.

Theorem 4.11 For a strict equivariant map ' Ë f W G ËX ! H Ë Y the following
diagram is commutative:

P.G ËX/ P.H ËY /

G ËGMap.G � I;X/ H ËHMap.H � I; Y /

G ËXI H ËY I

P.'Ëf /

� �

'�Ëf�

� �

'�Ëf�

4.4.2 Morita invariance We will start by proving that an essential equivalence
G �X !H �Y induces an essential equivalence between the path groupoids,

P.G ËX/! P.H ËY /:
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This will give that for a given Morita equivalence

G ËX �
 �G0 ËX 0 �

�!H ËY;

where � and � are essential equivalences, we have induced essential equivalences

P.G ËX/ P.�/
 �� P.G0 ËX 0/ P.�/��! P.H ËY /:

Proposition 4.12 If 'Ëf WGËX!H ËY is an essential equivalence , then P.'Ëf /
is an essential equivalence.

Proof (1) P.' Ë f / is fully faithful. We will show that P.G ËX/1 is the pullback
of topological spaces

P.G ËX/1 P.H ËY /1

P.G ËX/0 �P.G ËX/0 P.H ËY /0 �P.H ËY /0

�

.s;t/ .s;t/

���

Specifically we have to prove that the natural map � from P.GËX/1 to the fibered prod-
uct P.G ËX/0�P.G ËX/0�P.HËY /0�P.HËY /0/ P.H ËY /1 is a homeomorphism.

Let us define the inverse map ��1. For ˛; ˇ2P.GËX/0 and an element � 2P.HËY /1
with s.�/D t .�/D˛, we can assume that there is a subdivision of the interval such that ˛
and ˇ are represented both by elements of Map.ISn ; GËX/ and � by an element ofHn.
Therefore we have ˛D .˛1; : : : ; ˛n; k1; : : : ; kn�1/ and ˇD .ˇ1; : : : ; ˇn; k01; : : : ; k

0
n�1/

such that f .ˇi .r// D hif .˛i .r// for all i D 1; : : : ; n and k0i D hiC1kihi
�1 for all

i D 1; : : : ; n� 1.

But then by fixing r and using that 'Ëf is an essential equivalence, we have a fibered
product of topological spaces

.G ËX/1 .H ËY /1

.G ËX/0 � .G ËX/0 .H ËY /0 � .H ËY /0

�

.s;t/ .s;t/

���

and therefore for every r 2 Ii there is gri 2G such that �.gri /D hi . Since G is discrete
and the dependence on r is continuous, the n–tuple .gr1; : : : ; g

r
n/ actually does not

depend on r and represents an element of P.G ËX/1.
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(2) P.' Ëf / is essentially surjective. We will show that

s�1 W P.H ËY /1 �tP.HËY /0
P.G ËX/0! P.H ËY /0

is an open surjection.

For étale groupoids, the condition that the morphism

s�1 W .H ËY /1 �t.HËY /0
.G ËX/0! .H ËY /0

is an open surjection implies that it has local sections. We will use these local sections
to construct local sections of s�1 W P.H ËY /1 �tP.HËY /0

P.G ËX/0! P.H ËY /0.

Let fU˛g˛2� be a cover of Y and s˛ W U˛ ! .H Ë Y /1 �t.HËY /0
.G ËX/0 the local

sections. Take  2 P.H Ë Y /0 and suppose that  is represented by an element of
Map.ISn ;H ËY /; therefore  D .1; : : : ; n; k1; : : : ; kn�1/ with i W Ii ! Y .

Given the subdivision f0D r0 � r1 � � � � � rn D 1g associated to  and with an open
cover of Œ0; 1� given by connected intervals fIi j 1 � i � ng, we want to construct a
refinement of the subdivision

f0D r0 � s
1
0 � � � � � s

1
m1
D r1 � � � � � ri�1 D s

i
0 � � � � � s

i
mi
D ri � � � � � rn D 1g

along with connected intervals I ij with the property that i .I ij / � U˛i
j

for some ˛ij .
To construct the subdivision, first for Œri�1; ri � with nonempty interior, we consider
the covering fIi \ U˛g˛2�. By compactness of the interval Œri�1; ri � we can find
a partition ri�1 D si0 < � � � < s

i
mi
D ri such that each i .Œsij�1; s

i
j �/ is contained in

some U˛i
j

. Let I ij be an open connected neighborhood of Œsij�1; s
i
j � small enough such

that I ij \fs
i
0; s

i
1; : : : ; s

i
mi
g D fsij�1; s

i
j g.

For the repeated elements ri�1 D ri , it is a matter of just shrinking the interval Ii to
get i .Ii /� U˛i for some ˛i and to obtain an object of the category of subdivisions.

With the local sections s˛i
j

we obtain maps �2s˛i
j
.i .r// W I

i
j !X and functions

�1�1s˛i
j
.i .r// W I

i
j ! H , since the intervals are connected and H is a discrete

group, actually these functions are constant and we have elements hij 2 H with
s�1.f .�2s˛i

j
.i .r///; h

i
j /D i .r/, ie

f .�2s˛i
j
.i .r///D h

i
j i .r/

for r 2 I ij .
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Note that .hij /
�1f .�2s˛i

j
.i .s

i
j ///D .h

i
jC1/

�1f .�2s˛i
jC1

.i .s
i
j /// (both are i .sij /)

and therefore

hijC1.h
i
j /
�1f .�2s˛i

j
.i .s

i
j ///D f .�2s˛i

jC1
.i .s

i
j ///:

Since f is full and faithful, there is a gij 2G with �.gij /D h
i
jC1.h

i
j /
�1 such that

gij�2s˛i
j
.i .s

i
j //D �2s˛i

jC1
.i .s

i
j //:

Similarly at the intersection points of two consecutive paths we have kii .r/D iC1.r/
for all r 2 QI ij and therefore

ki .h
i
mi
/�1f .�2s˛imi

.i .ri //Dkii .ri /DiC1.ri /D .h
iC1
0 /�1f .�2s˛iC10

.iC1.ri //:

Then
hiC10 ki .h

i
mi
/�1f .�2s˛imi

.i .ri //D f .�2s˛iC10

.iC1.ri //;

and since f is full and faithful, we have elements gi 2G with �.gi /D hiC10 ki .h
i
mi
/�1

such that
gi�2s˛imi

.i .ri //D �2s˛iC10

.iC1.ri //:

Therefore we have a generalized path�
.�2s˛i

j
.i .r///i;j ; g

1
1; g

1
2; : : : ; g

1
m1
; g1; g21; : : : ; g

n
mn

�
and elements .h11; h

1
2; : : : ; h

1
m1�1

; : : : ; hnmn�1/ of H . By construction,

.h11; h
1
2; : : : ; h

1
m1�1

; : : : ; hnmn�1/
�
.�2s˛i

j
.i .r///i;j ; g

1
1; g

1
2; : : : ; g

1
m1
; g1; g21; : : : ; g

n
mn

�
is

.1jI11
; 1jI12

: : : ; 1jI1m1
; : : : ; njInmn ; id; id; : : : ; k1; id; : : : ; kn/:

In the colimit this represents the same element as .1; : : : ; n; k1; : : : ; kn�1/. Therefore
we have constructed local sections on the set˚

.1; : : : ; n; k1; : : : ; kn�1/ 2Map.ISn ;H ËY / j i .Œs
i
j�1; s

i
j �/� U˛i

j

	
;

which is an open set in the compact open topology of Map.ISn ;H ËY /.

Thus, we have proved that the path groupoid functor sends essential equivalences
to essential equivalences and therefore the path groupoid is invariant under Morita
equivalence.

Theorem 4.13 If G ËX �M H ËY , then P.G ËX/�M P.H ËY /.
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4.5 The free loop groupoid L.G ËX/

We use the model of the path groupoid P 00 DG ËXI to define the loop groupoid as
the following pullback along the diagonal:

(1)
G ËXI

� WG ËX .G �G/Ë .X �X/

ev

Definition 4.14 The free loop groupoid L.G ËX/ of a translation groupoid G ËX is

L.G ËX/D .G �G/ËL0;
where

L0 D f.ˇ; h; l/ 2X
I
�G �Gjˇ.0/D hl�1ˇ.1/g

and the group G �G acts on L0 by .a; b/.ˇ; h; l/D .aˇ; bha�1; bla�1/.

Figure 2 depicts an arrow .a; b/ 2G �G from .ˇ; h; l/ to .aˇ; bha�1; bla�1/.

We will show that this groupoid .G �G/ËL0 is Morita equivalent to the translation
groupoid G ËL where

LD f.˛; g/ 2XI �Gj˛.0/D g˛.1/g

and the action is given by .˛; g/� .k˛; kgk�1/. Figure 3 depicts an arrow .k; .˛; g//

between .˛; g/ and .k˛; kgk�1/.

Proposition 4.15 If GËX is a topological groupoid , then the loop groupoidL.GËX/
is Morita equivalent to G ËL, where L and the action are defined above.

ˇ

aˇ

aa

h
l

alb�1ahb�1

b

Figure 2
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˛

k˛

kk

g

Figure 3

Proof We define an equivariant map � Ë � W .G �G/ËL0!G ËL by �..a; b//D a
and �..ˇ; h; l//D .ˇ; l�1h/. This map is an essential equivalence since the map

s�1 WG �L0! L

given by s�1.k; .ˇ; h; l//D .k�1ˇ; k�1l�1hk/ is an open surjection and G �G �L0
is given by the pullback of the maps

G �L

L0 �L0 L�L

.s;t/

���

Remark 4.16 We can use our description for the free loop groupoid in the special case
of the point groupoid. We obtain that L.G Ë �/D .G �G/Ë .G �G/ with the action
.a; b/ � .h; l/D .bha�1; bla�1/. This groupoid is equivalent to G acting on itself by
conjugation by using the second characterization of the loop groupoid as G ËL with
LD f.ˇ; g/ 2XI �G j ˇ.0/D gˇ.1/g. In this way, we recover a result of Lupercio
and Uribe in [7]. Observe that L.G Ë �/DG ËG, whereas P.G Ë �/DG Ë �.

5 Based path and loop groupoids

Now that we have defined the free path groupoid of a translation groupoid and have
given several equivalent models, we can give an explicit characterization of the various
groupoids resulting from fixing certain points. These based groupoids of paths will be
of great significance to the groupoid Lusternik–Schnirelmann theory defined in [3] and
further studied in [2].
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5.1 The groupoid�x;y of paths from x to y

The groupoid of paths from x to y, �x;y , is defined as a pullback of the evaluation map
ev WP.GËX/! .G�G/Ë.X�X/ and the constant map x�y W1! .G�G/Ë.X�X/,
where 1 is the trivial groupoid with one object and one arrow, ie 1 D e Ë �, and
.x �y/.�/D .x; y/. That is,

�x;y P.G ËX/

1 .G �G/Ë .X �X/

ev

x�y

Note that by the definition of groupoid pullback, we have that if we take the model of
the path groupoid of generalized paths, P D colim� Ë colim , then the object space
of the pullback is

f..˛1; : : : ; ˛n; k1; : : : ; kn�1/; h; l/2 colim �.G�G/ j˛1.0/Dhx and ˛n.1/D lyg;

ie the objects of �x;y are sequences of paths and arrows .h; ˛1; k1; : : : ; kn; ˛n; l/
where s.ki /D ˛iC1.ri / for i D 1; : : : ; n�1, t .ki /D ˛i .ri / for i D 0; : : : ; n, s.h/D x
and s.l/ D y; which are precisely the Haefliger G–paths [6] when restricted to the
closed intervals in the subdivision. Note that the sequences in Haefliger paths start and
end with arrows and not with paths like our generalized paths in the free path groupoid
defined in Section 4. We recover the original sequence in the Haefliger G–paths when
we fix the endpoints x and y in our free generalized paths.

For an equivalent characterization of the groupoid of paths from x to y, we can consider
our simplest model for the path groupoid P 00 DG ËXI . In this case, we describe the
space of objects as .�x;y/0 D f.ˇ; h; l/ 2XI � .G �G/ j ˇ.0/D hx and ˇ.1/D lyg.

These are paths that start at any point in the orbit of x and end at any point in the orbit
of y. The space of arrows is the Cartesian product G � .�x;y/0 where the action is
given by g.ˇ; h; l/D .gˇ; gh; gl/; see Figure 4.

Since .ˇ; h; l/ � .gˇ; gh; gl/ for all g 2 G, we can consider g D h�1 and we have
that all classes Œ.ˇ; h; l/� have a representative of the form .˛; k/ with ˛ D h�1ˇ and
k D h�1l . Then we can consider the space of objects

Px;y D f.˛; k/ 2X
I
�G j ˛.0/D x and ˛.1/D kyg:
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ˇ

gˇ

gg

l

gl

h

gh

Figure 4

Observe that

.˛; k/� .h�1ˇ; e; h�1l/� .gh�1ˇ; ge; gh�1l/D .g˛; g; gk/� .e˛; e; k/� .˛; k/;

so the action is trivial on the space of objects Px;y .

Therefore the groupoid of paths between x and y is the translation groupoid �x;y D
G Ë .�x;y/0 which is equivalent to the topological space Px;y .

5.2 The groupoid�x of based loops

Similarly, we define the based loop groupoid as the groupoid pullback,

�x P.G ËX/

1 G �G Ë .X �X/

ev

x�x

where x � x is the constant map with .x � x/.�/D .x; x/.

That is, the based loop groupoid is the translation groupoid �x DG Ë .�x/0 where
the object space is

.�x/0 D f.ˇ; h; l/ 2X
I
� .G �G/ j ˇ.0/D hx and ˇ.1/D lxg;

ie the space of paths that begin and end at (possibly different) points in the orbit of x.
The action is given by g.ˇ; h; l/D .gˇ; gh; gl/; see Figure 5.

Again, the groupoid �x is equivalent to the topological space

Px;x D f.˛; k/ j ˛.0/D x and ˛.1/D kxg:
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ˇ

gˇ

gg

lh

x

Figure 5

Alternatively, the based loop groupoid �x can be obtained as the groupoid pullback

�x L.G ËX/

1 G ËX

ev0

x

where L.G ËX/ is the free loop groupoid.

5.3 The groupoid Px of paths from x

We define the x–based path groupoid as the groupoid pullback

Px P.G ËX/

1� .G ËX/ .G �G/Ë .X �X/

ev

.x;id/

where .x; id/ W 1� .G ËX/! .G �G/Ë .X �X/ is given by .x; id/.�; z/ D .x; z/.
Then the object space of the pullback Px is

.Px/0 D f.ˇ; .h; l/; .�; z// 2X
I
�G �G � 1�X j ˇ.0/D hx and ˇ.1/D lzg

D f.ˇ; .h; l/; z/ j ˇ.0/D hx and ˇ.1/D lzg:

The group G �G acts on .Px/0 by .g; k/.ˇ; .h; l/; z/ D .gˇ; .gh; glk�1/; kz/; see
Figure 6.

The x–based path groupoid is the translation groupoid Px D .G �G/Ë .Px/0.

Algebraic & Geometric Topology, Volume 23 (2023)



1992 Andrés Ángel and Hellen Colman

ˇ

gˇ

gg

lh

x
k

glk�1
gh

Figure 6

Observing that the equivalence class of each .ˇ; .h; l/; z/ 2 .Px/0 contains an element
of the form .˛; g;w/ 2 XI � G � X we have that the based path groupoid Px is
equivalent to GËP where P Df.˛; g;w/ j ˛.0/D x and ˛.1/D gwg and the action is
given by k.˛; g;w/D .˛; gk�1; kw/. Figure 7 depicts an arrow .k; .˛; g; w//2G�P

between .˛; g;w/ and .˛; gk�1; kw/.

The x–based path groupoid Px is not in general equivalent to a topological space.

Given points x; y 2X , our various path groupoids are related by

�x;y 1y

�x Px G ËXI G ËX

1x G ËX

ev0

ev1

where 1x D e Ë x and 1y D e Ë y and all diagrams are commutative up to a natural
transformation.

˛

kw

gk�1

w

k

g

Figure 7
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5.4 Examples

We will illustrate in this section the concepts described in the previous sections by
calculating various path groupoids in some particular cases.

5.4.1 Topological spaces The free path groupoid of the topological space X is
P.e ËX/ D e ËXI D XI and the free loop groupoid is L.e ËX/ D e ËL where
L D f˛ 2 XI j ˛.0/ D ˛.1/g. In this way we recover the classical free path and
loop spaces of a topological space. Likewise, the based path and loop groupoids also
coincide with the classical ones for topological spaces.

5.4.2 Groups For a point groupoidGË�we have shown before that the path groupoid
is itself and the loop groupoid is .G �G/Ë .G �G/ with the action .a; b/ � .h; l/D
.bha�1; bla�1/, which is equivalent to G acting on itself by conjugation; that is,
L.G Ë �/ D G Ë G and P.G Ë �/ D G Ë �. The based loop groupoid is the unit
groupoidG, as a discrete topological space. The based path groupoid of paths emanating
from � is G ËG.

5.4.3 Free actions If G acts freely on a topological space X , we observe that the
groupoid G ËX and the topological space X=G are Morita equivalent. Then, we have
that P.GËX/DP.eËX=G/D eË.X=G/I D .X=G/I and the free loop groupoid is
L.G ËX/D L.X=G/ where L.X=G/ is the free loop space of the topological space
X=G. In the same way, we have that the based groupoids coincide with the ones of the
topological space X=G.

5.4.4 Orbifolds We proved that for developable orbifolds G Ë X , the free path
groupoid is P.GËX/DGËXI and the free loop groupoid isL.GËX/DGËL where
LDf.˛; g/2XI �G j ˛.0/D g˛.1/g. Also, the groupoid of paths between x and y is
the topological space Px;yDf.˛; k/2XI�G j˛.0/Dx and ˛.1/Dkyg, the groupoid
of based loops is the topological space Px;x D f.˛; k/ j ˛.0/D x and ˛.1/D kxg and
the groupoid of based paths from x is the translation groupoid Px D .G �G/Ë .Px/0.

6 Homotopy

We will define in this section a notion of homotopy based on the explicit description of
the path groupoid P.GËX/ given in the previous section. This will provide a concrete
alternative to the more abstract presentation given by Noohi in [10; 11] for stacks.
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6.1 Natural transformations for translation groupoids

The equivariant maps ' Ë f W K Ë Z ! G Ë X and  Ë g W K Ë Z ! G Ë X are
equivalent by a natural transformation if there exists a K–map  W Z! G such that
.z/f .z/ D g.z/ for all z 2 Z where both Z and G are K–spaces considering the
action of K on G,

K �G!G; .k; g/ 7!  .k/g'.k/�1:

Therefore ' Ëf �  Ëg if there exists  WZ!G such that

(1) .z/f .z/D g.z/ for all z 2Z, and

(2) .kz/D  .k/.z/'.k/�1 for all k 2K.

If Z is connected, then  is a constant map since G is discrete. Then ' Ëf � Ëg if
there exists h 2G such that hf .z/D g.z/ for all z 2Z and hD  .k/h'.k/�1 for all
k 2K. Then gD hf and  D h'h�1. In other words,  .k/ is conjugated to '.k/ for
all k 2K.

In addition, if G is abelian, then ' Ëf �  Ëg if gD hf for some h 2G and ' D  .

If X DZ D �, then ' Ë � �  Ë � if and only if ' and  are conjugate, ' D h�1 h.
In particular, when the group acting is abelian we have that two maps between point
groupoids are equivalent by a natural transformation only if they are equal.

We give now a characterization of 2–isomorphism for strict maps. Namely, if two strict
maps are 2–isomorphic then when composed with an essential equivalence they are
equivalent by a natural transformation, and if two strict maps are equivalent by a natural
transformation then they are 2–isomorphic as generalized maps.

Proposition 6.1 If f and g are equivalent by a natural transformation , then f ) g as
generalized equivariant maps.

Proof Just consider the essential equivalences � and � as identity maps and the
following diagram is commutative up to natural transformations since f � g:

G ËX

G ËX G ËX H ËY

G ËX

fid

�

id

id

�

id g
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Proposition 6.2 If two strict maps f W G ËX ! H Ë Y and g W G ËX ! H Ë Y
are 2–isomorphic , then there exists an essential equivalence � W L!G ËX such that
f �� g�.

Proof We have that there exist essential equivalences �; � such that the diagram

G ËX
f

%%

id

yy

G ËX L

�

OO

�
��

H ËY

G ËX
id

ee

g

99
��

commutes up to natural transformation. That is, � � � and f � � g�. Therefore,
f �� g�.

Proposition 6.3 If .�; f /) .�; g/, then there exist essential equivalences � and �
such that f �) g�.

Proof By definition of 2–isomorphism, there are essential equivalences � and � such
that f � � g�. The result follows from Proposition 6.1.

Proposition 6.4 If f ) g, then .�; f /) .�; g/ for all essential equivalences � and �
with � � � .

6.2 Diagonal map

We will consider the pullback of the unique morphism G ËX c
�! 1 with itself, where

1 is the terminal object in MTopG. This pullback defines the product and then by
the universal property we obtain the definition of the diagonal map. Then, the path
groupoid will be a factorization of that diagonal.

Definition 6.5 [5] An object T in a bicategory B is terminal if the category BŒC; T �
is equivalent to the terminal category for every object C in B. A terminal object is
unique up to equivalence when it exists.

The trivial groupoid 1D e Ë � is the terminal object in the bicategory of translation
groupoids MTrG since the category MTrGŒG ËX; 1� is equivalent to the category 1.
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Indeed, the objects in the category MTrGŒG Ë X; 1� are generalized maps and the
arrows are classes of diagrams. We can see that all objects are related by an arrow, ie
MTrGŒG ËX; 1� is the pair groupoid. Given two generalized maps,

G ËX �0
 �G0 ËX 0 c

0

�! 1 and G ËX �00
 �G00 ËX 00 c

00

�! 1;

we can see that they are equivalent, ie

G0 ËX 0

##

�0

yy

G ËX P

OO

��

1

G00 ËX 00
�00

ff ;;
��

by considering P as the pullback of �0 and �00. In particular, the strict constant map
G ËX c

�! 1 is the (unique up to 2–isomorphism) map to the terminal object.

Let us now consider the pullback of this constant map with itself which defines the
product

G �G Ë .X �X/

��

// G ËX

c

��

G ËX
c

// 1

The product .G � G/ Ë .X � X/ of the object G Ë X with itself is unique up to
equivalence.

By the universal property of the pullback, there exists a map � that makes the two
triangles commutative up to natural transformation

G ËX

.G �G/Ë .X �X/ G ËX

G ËX 1

id

id

�

p1

p2 c

c

The map � WG ËX ! .G �G/Ë .X �X/ is the diagonal map. Its explicit definition
on objects is �.x/D .x; x/ and on arrows, �.g; x/D .g; g; x; x/. The diagonal map
is defined up to 2–isomorphism.
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Remark 6.6 The diagonal defined in [1] is 2–isomorphic to this one.

Definition 6.7 The evaluation map ev W G ËXI ! .G �G/Ë .X �X/ is given by
ev.g; ˛/D .g; g; ˛.0/; ˛.1//.

We have that the diagonal map factors through the path groupoid as expected.

Proposition 6.8 There is a factorization of the diagonal map �

G ËX .G �G/Ë .X �X/

G ËXI
k

�

e

where k and e are generalized maps.

Proof Let k be the functor G Ë X ! G Ë XI given by x  ˛x on objects, and
.g; x/ .g; ˛x/, where ˛x W I ! X is a constant path at x 2 X , and let e be the
evaluation map, e D ev. Then, we have that the composition e ı c is equivalent by a
natural transformation to the diagonal �.

6.3 Homotopic maps

We will now give an explicit characterization of the homotopy between generalized
maps.

Definition 6.9 Two generalized maps,

K ËY �
 �K 0 ËY 0 f�!G ËX and K ËY �

 �K 00 ËY 00 g�!G ËX;

are homotopic if there is a generalized map K ËY �
 � zK Ë zY H

�!GËX such that the
following diagram commutes up to 2–isomorphism:

G ËX G ËXI
ev1

//
ev0

oo G ËX

K 0 ËY 0
f

ee

�
%%

zK Ë zY

H

OO

�

��

K 00 ËY 00
g

99

�
xx

K ËY

This means that the generalized map .�; f / is isomorphic to the generalized map
.�; ev0 ıH/ and .�; g/ is isomorphic to .�; ev1 ıH/.
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That is, .�; f / is homotopic to .�; g/ if there exists .�;H/ and two commutative
diagrams up to natural transformations,

zK Ë zY
ev0H

%%

�

yy

KËY L0

u0

OO

v0
��

G ËX

K 0 ËY 0
�

ee

f

99
��

zK Ë zY
ev1H

%%

�

yy

KËY L1

u1

OO

v1
��

G ËX

K 00 ËY 00
�

ee

g

99
��

where Li is a translation groupoid, and ui and vi are equivariant essential equivalences
for i D 0; 1. We will denote this homotopy between equivariant generalized maps by'.

Remark 6.10 .�; f /' .�; g/ if there exists .�;H/ and essential equivalences u0, u1,
v0 and v1 such that

f v0 � ev0Hu0 and gv1 � ev1Hu1

with �u0 � �v0 and �u1 � �v1.

Proposition 6.11 If .�; f /) .�; g/, then .�; f /' .�; g/.

Proof ConsiderH D iX ıf where iX is the inclusion ofX inXI given by iX .x/D˛x
with ˛x being the constant map ˛x.t/D x for all t 2 I . Then the following diagram is
commutative up to 2–isomorphism:

G ËX G ËXI
ev1

//
ev0

oo G ËX

K 0 ËY 0
f

ee

�
&&

K 0 ËY 0
H

OO

�
��

K 00 ËY 00
g

99

�
xx

K ËY

The first triangle is an equality and the second is commutative since .�; f /) .�; g/.

Remark 6.12 Let f and g be strict maps. Following the characterization for isomor-
phism of strict maps given in Proposition 6.2 and the definition of groupoid homotopy,
we have that f ' g if there exists a generalized map .�;H/ and essential equivalences
� and � such that f��� ev0H� and g�� � ev1H�.
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Proposition 6.13 Let f and g be strict maps.

(1) If f and g are  –equivariantly homotopic maps , then f ' g as generalized
equivariant maps.

(2) If f and g are equivalent by a natural transformation , then f ' g as generalized
equivariant maps.

Proof (1) LetH WY !XI be the –equivariant homotopy, ieHt .ky/D .k/Ht .y/.
Then the following diagram is commutative:

G ËX G ËXI
ev1
//

ev0
oo G ËX

K ËY
f

ee

H

OO

g

99

(2) This follows from Propositions 6.1 and 6.11.

Therefore our definition of homotopy generalizes both the notion of natural transforma-
tion and the notion of equivariant homotopy.

Proposition 6.14 If .�; f / ' .�; g/ then there exist essential equivalences a and b
such that fa' gb as strict maps.

Proof Since we have a homotopy between generalized maps, we know that there
exists .ı;H/ and essential equivalences u0, v0, u1 and v1 such that

f v0 � ev0Hu0; gv1 � ev1Hu1; ıu0 � �v0; ıu1 � �v1:

Take aD v0.u0/�1ı�1 and b D v1.u1/�1ı�1. Then fa and gb are homotopic.

Proposition 6.15 The path groupoid G ËXI is homotopy equivalent to the groupoid
G ËX . The evaluation e1 WG ËXI !G ËX is a homotopy equivalence.

Proof Consider the map H WG ËXI !G Ë .XI /I such that H.˛/D � with

� W I !XI ; �.t/D ˛.r C t � rt/:

We have the commutative diagram

G ËXI G Ë .XI /I
ev1

//
ev0
oo G ËXI

G ËXI
id

ff

H

OO

iıe1

88

showing that i ı e1 is homotopic to the identity map.
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7 Fibrations

We recall the definition of fibration for topological spaces given as a dualization of the
notion of cofibration.

Definition 7.1 [8; 18] A map p W E ! B is a fibration if for all spaces U with
ev0 ıK D p ı k in the diagram

U

EI BI

E B

K

k

zK

p�

ev0 ev0
p

there exists zK that makes the diagram commute.

We want to introduce a notion of fibration for generalized maps. First, let us note that a
strict equivariant map 'Ëf WGËX!HËY induces a map '�Ëf� WGËXI!HËY I

by f�.˛/D f ı ˛ for all ˛ 2 XI and '� D '. We proved in Proposition 4.12 that if
� W G ËX ! H Ë Y is an essential equivalence, then �� W G ËXI ! H Ë Y I is an
essential equivalence as well.

Then every generalized map GËX �
 �G0ËX 0 f�!H ËY induces a generalized map

G ËXI ��
 �G0 ËX 0I f�

�!H ËY I between the path groupoids.

Definition 7.2 A generalized map G Ë X �
 � G0 Ë X 0 f�! H Ë Y is a groupoid

fibration if for all translation groupoids LËU with ev0 ı .�;K/) .!; k/ ı .�; f / in
the diagram

LËU

zL L

` G ËXI G0 ËX 0I H ËY I

G ËX G0 ËX 0 H ËY

zK

z�
K

�

k

!

ev0

f�

ev0

��

ev0

�

f

there exists . z�; zK/ that makes the diagram commute up to 2–isomorphism.
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Since a 2–isomorphism between strict maps induces a 2–isomorphism between the
induced maps between their path groupoids, being a fibration is a property invariant
under 2–isomorphism.

Proposition 7.3 Consider 2–isomorphic maps

f WG ËX !H ËY and g WG ËX !H ËY;

f ) g. Then f is a fibration if and only if g is a fibration.

We will see that for .�; f / to be a groupoid fibration it is necessary and sufficient that
the right leg of the span is a groupoid fibration (considered as a generalized map with
identity as a left leg).

Proposition 7.4 A generalized map G ËX �
 � G0 ËX 0 f�! H Ë Y is a groupoid

fibration if and only if f WG0 ËX 0!H ËY is a groupoid fibration.

Proof If the generalized map .�; f / is a groupoid fibration, then there exists .� 0; zH 0/
that makes the diagram

LËU L

zL P

G ËXI G0 ËX 0I H ËY I

` G ËX G0 ËX 0 H ËY

H

�

zH 0

� 0

zH

�

ev0

f�

��

ev0 ev0

�H0

H0

�0

�

f

commute up to 2–isomorphism.

Let P be the pullback

P G0 ËX 0I

zL G ËXI

zH 00

�0� ��

zH 0

Take � D � 0�0� and zH D zH 00. Then f WG0 ËX 0!H ËY is a groupoid fibration.
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Conversely, if f is a groupoid fibration then we have this commutative diagram

LËU L

P

` G ËXI G0 ËX 0I H ËY I

`0 G ËX G0 ËX 0 H ËY

H

�

zH

zH 0

�

H0

�0

ev0

f�

��

ev0 ev0

H 00

� 00

�

f

where .� 00;H
0
0/D � ı .�0;H0/. Now take zH D �� zH 0 and � D � 0. Therefore, .�; f / is

a fibration.

Then, the test to decide if a generalized map is a groupoid fibration amounts to check
the definition of groupoid fibration with a strict map. Moreover, we know that any
generalized map L Ë U  ` ! G Ë X is equivalent to a generalized map of the
form LËU  L0 ËU 0! G ËX , where L0 may be chosen as L�G and the group
homomorphisms are the appropriate projections onto L and G [14].

The groupoid fibration definition specializes to the following:

Definition 7.5 A strict map f W G ËX ! H Ë Y is a groupoid fibration if for all
translation groupoids LËU with ev0 ı .�;K/) f ı .!; k/ in the diagram

LËU

zL L00 ËU 00

L0 ËU 0 G ËXI H ËY I

G ËX H ËY

zK

z�

K

�

k

!

ev0

f�

ev0
f

there exists . z�; zK/ that makes the diagram commute up to 2–isomorphism.
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In other words, f is a groupoid fibration if for all commutative diagrams

.L00/ËU 00

LËU H ËY

.L�G/ËU 0

ev0ıK�

�

�

�

�

! f ık

there exists . z�; zK/ such that the following diagrams commute:

zL

L00 G ËX

.L�G/ËU 0

ev0ı zKz�

�

�0

�0

�

! k

zL

LËU H ËY I

.L�H/ËU 00

f�ı zKz�

�

�00

�00

�

� K

Proposition 7.6 The evaluation map ev0 WG ËXI !G ËX is a groupoid fibration.

Proof For all translation groupoids LËU making the following diagram commutative
up to 2–isomorphism, we will construct the required generalized map . z�; zK/:

LËU

zL L00 ËU 00

L0 ËU 0 G Ë .XI /I G ËXI

G ËXI G ËX

zK

z� K

�

k

!

ev0
ev0

Since there is a 2–isomorphism between the generalized maps .�; ev0K/ and .!; ev0k/,
we know that there exists a groupoid zL and essential equivalences � and � such that
the following diagram commutes up to natural transformations:

L00 ËU 00

LËU zL G ËX

L0 ËU 0

ev0ıK�

�

�

�

�

! ev0ık
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We take z�D�� and will construct a map zK W zL!G Ë .XI /I such that the following
diagram commutes up to natural transformations:

LËU

zL L00 ËU 00

L0 ËU 0 G Ë .XI /I G ËXI

G ËXI G ËX

z� �

�

zK
K

�

k

!

ev0

ev0

Consider the groupoid pullback

P G ËXI

G ËXI G ËX

�1

�2 ev0

ev0

where P is the translation groupoid

P D .G �G/Ë .XI �X XI �X G/

with XI �X XI �X G D f.˛1; ˛2; k/ j k˛1.0/D ˛2.0/g. We observe that in fact P is
equivalent to Map.IS2 ; G ËX/. To show this equivalence, we construct first a functor
K W P !G Ë .XI �X XI /, where XI �X XI DXI_I is the pullback of the diagram

XI

XI X

ev0

ev0

given by K.˛1; ˛2; k//D .k˛1; ˛2/ on objects and K.g1; g2/D g2 on morphisms.

Since .g1; g2/ � .˛1; ˛2; k/D .g1˛1; g2˛2; g2kg�11 / and

K.g1˛1; g2˛2; g2kg
�1
1 /D .g2kg

�1
1 g1˛1; g2˛2/D .g2k˛1; g2˛2/D g2.k˛1; ˛2/;

we can see that this is just a special case of the equivalences of the path groupoid
models from Section 4,

Map.IS2 ; G ËX/Š P �G ËX
I_I
ŠG ËXI :
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We observe that the diagram of functors

G ËXI G ËXI_I
j�2
//

j�1
oo G ËXI

P

�1

ff

K

OO

�2

88

commutes up to natural transformations since the right-hand side commutes on the nose
and the left-hand side commutes up to a natural transformation. Here j1 W I ! I _ I

and j2 W I ! I _ I are the natural maps for the coproduct of pointed spaces

I

j1 ""

i1
// I � I

�
��

I

j2||

i2
oo

I _ I

where i1.t/ D .t; 0/, i2.s/ D .0; s/ and � W I � I ! I _ I is a deformation retract.
Therefore, we have the commutative diagram

(2)

P

G ËXI_I

G ËXI�I G ËXI

G ËXI G ËX

K

�1

�2

j�1

j�2

��

i�2

i�1

ev0

ev0

Now, by the universal property of the groupoid pullback, there exists a functor � WL!P

such that the diagram

(3)

L

P G ËXI

G ËXI X

K�

k�

�

ev0

ev0

commutes up to natural transformation.
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Now, we put together diagrams (2) and (3) to obtain

zL L00 ËU 00

L0 ËU 0 P

G ËXI_I

G ËXI�I G ËXI

G ËXI G ËX

�

�
� K

k

K

�1

�2

j�1

j�2

��

i�2

i�1

ev0

ev0

and define zK D �� ıK ı �.
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